بدائل البحث:
random optimization » codon optimization (توسيع البحث), from optimization (توسيع البحث), carbon optimization (توسيع البحث)
cell optimization » field optimization (توسيع البحث), wolf optimization (توسيع البحث), lead optimization (توسيع البحث)
library based » laboratory based (توسيع البحث)
based random » used random (توسيع البحث), laird random (توسيع البحث)
image cell » image 1_cell (توسيع البحث), image 2_cell (توسيع البحث), image 3_cell (توسيع البحث)
random optimization » codon optimization (توسيع البحث), from optimization (توسيع البحث), carbon optimization (توسيع البحث)
cell optimization » field optimization (توسيع البحث), wolf optimization (توسيع البحث), lead optimization (توسيع البحث)
library based » laboratory based (توسيع البحث)
based random » used random (توسيع البحث), laird random (توسيع البحث)
image cell » image 1_cell (توسيع البحث), image 2_cell (توسيع البحث), image 3_cell (توسيع البحث)
-
1
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. The A* algorithm then evaluated connectivity by minimizing Euclidean distance and heuristic cost between cells. …"
-
2
RosettaAMRLD: A Reaction-Driven Approach for Structure-Based Drug Design from Combinatorial Libraries with Monte Carlo Metropolis Algorithms
منشور في 2025"…The Rosetta automated Monte Carlo reaction-based ligand design (RosettaAMRLD) integrates a Monte Carlo Metropolis (MCM) algorithm and reaction-driven molecule proposal to enhance structure-based <i>de novo</i> drug discovery. …"
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
Addressing Imbalanced Classification Problems in Drug Discovery and Development Using Random Forest, Support Vector Machine, AutoGluon-Tabular, and H2O AutoML
منشور في 2025"…The important findings of our studies are as follows: (i) there is no effect of threshold optimization on ranking metrics such as AUC and AUPR, but AUC and AUPR get affected by class-weighting and SMOTTomek; (ii) for ML methods RF and SVM, significant percentage improvement up to 375, 33.33, and 450 over all the data sets can be achieved, respectively, for F1 score, MCC, and balanced accuracy, which are suitable for performance evaluation of imbalanced data sets; (iii) for AutoML libraries AutoGluon-Tabular and H2O AutoML, significant percentage improvement up to 383.33, 37.25, and 533.33 over all the data sets can be achieved, respectively, for F1 score, MCC, and balanced accuracy; (iv) the general pattern of percentage improvement in balanced accuracy is that the percentage improvement increases when the class ratio is systematically decreased from 0.5 to 0.1; in the case of F1 score and MCC, maximum improvement is achieved at the class ratio of 0.3; (v) for both ML and AutoML with balancing, it is observed that any individual class-balancing technique does not outperform all other methods on a significantly higher number of data sets based on F1 score; (vi) the three external balancing techniques combined outperformed the internal balancing methods of the ML and AutoML; (vii) AutoML tools perform as good as the ML models and in some cases perform even better for handling imbalanced classification when applied with imbalance handling techniques. …"
-
20