Search alternatives:
samples optimization » kepler optimization (Expand Search), compared optimization (Expand Search), whale optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
based samples » based sample (Expand Search), case samples (Expand Search), paired samples (Expand Search)
samples optimization » kepler optimization (Expand Search), compared optimization (Expand Search), whale optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
based samples » based sample (Expand Search), case samples (Expand Search), paired samples (Expand Search)
-
1
RosettaAMRLD: A Reaction-Driven Approach for Structure-Based Drug Design from Combinatorial Libraries with Monte Carlo Metropolis Algorithms
Published 2025“…By leveraging combinatorial ultralarge libraries, RosettaAMRLD ensures synthetic accessibility, optimizing protein–ligand interactions while efficiently sampling accessible chemical space. …”
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
Addressing Imbalanced Classification Problems in Drug Discovery and Development Using Random Forest, Support Vector Machine, AutoGluon-Tabular, and H2O AutoML
Published 2025“…To carry out our study, we have selected four such techniques(a) threshold optimization using (i) GHOST and (ii) the area under the precision–recall curve (AUPR) curve, (b) internal balancing method of AutoML and class-weight of machine learning methods, and (c) data balancing using SMOTETomekand generated 27 data sets considering nine different class ratios (i.e., the ratio of the positive class and total samples) from three data sets that belong to the drug discovery and development field. …”
-
15
iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules
Published 2022“…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …”
-
16
iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules
Published 2022“…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …”
-
17
iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules
Published 2022“…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …”
-
18
-
19
-
20
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
Published 2022“…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”