Search alternatives:
quality optimization » policy optimization (Expand Search), whale optimization (Expand Search), path optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
power quality » poor quality (Expand Search), water quality (Expand Search)
lines power » lens power (Expand Search)
quality optimization » policy optimization (Expand Search), whale optimization (Expand Search), path optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
power quality » poor quality (Expand Search), water quality (Expand Search)
lines power » lens power (Expand Search)
-
1
-
2
-
3
-
4
Algorithm operation steps.
Published 2025“…<div><p>The detection of insulator defects in transmission lines is of paramount importance for the safe operation of power systems. …”
-
5
-
6
Schematic diagram of chromosome crossover.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
7
Vehicle-only delivery routes.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
8
Delivery route diagram of Stage 4.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
9
Manhattan delivery route.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
10
Final delivery routes of vehicle-assisted UAVs.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
11
Customer point clustering results.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
12
Schematic diagram of chromosome mutation.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
13
Flight path in three-dimensional space.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
14
IKM Pseudo – code.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
15
Locations of open areas and no-fly zones.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
16
Division map of the delivery area.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
17
Schematic diagram of cluster centers in Phase 1.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
18
UAV-only delivery routes.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
19
Shapiro-Wilk test results.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
20
t-Test analysis results.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”