يعرض 61 - 80 نتائج من 117 نتيجة بحث عن '(( binary image data optimization algorithm ) OR ( binary data based optimization algorithm ))', وقت الاستعلام: 1.19s تنقيح النتائج
  1. 61

    Details of 23 basic benchmark functions. حسب Ying Li (38224)

    منشور في 2024
    "…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  2. 62

    Related researches. حسب Ying Li (38224)

    منشور في 2024
    "…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  3. 63

    S1 Dataset - حسب Ying Li (38224)

    منشور في 2024
    "…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
  4. 64
  5. 65
  6. 66
  7. 67

    Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx حسب Veera Narayana Balabathina (22518524)

    منشور في 2025
    "…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …"
  8. 68
  9. 69

    Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity حسب George S. Watts (7962206)

    منشور في 2019
    "…Adopting metagenomic analysis for clinical use requires that all aspects of the workflow are optimized and tested, including data analysis and computational time and resources. …"
  10. 70

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  11. 71

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  12. 72

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  13. 73

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  14. 74

    Normalized computation rate for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  15. 75

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  16. 76

    IRBMO vs. variant comparison adaptation data. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
  17. 77

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. حسب Jiaqing Luo (10975030)

    منشور في 2021
    "…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
  18. 78
  19. 79

    Pseudo Code of RBMO. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
  20. 80

    P-value on CEC-2017(Dim = 30). حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"