Showing 21 - 37 results of 37 for search '(( binary image design optimization algorithm ) OR ( binary data robust optimization algorithm ))', query time: 0.38s Refine Results
  1. 21

    Collaborative hunting behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  2. 22

    Friedman average rank sum test results. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  3. 23

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  4. 24

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  5. 25

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  6. 26

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  7. 27

    Fortran & C++: design fractal-type optical diffractive element by I-Lin Ho (13768960)

    Published 2022
    “…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …”
  8. 28
  9. 29

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf by Cecilia Lindig-León (7889777)

    Published 2020
    “…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
  10. 30

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
  11. 31

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
  12. 32
  13. 33
  14. 34

    Models and Dataset by M RN (9866504)

    Published 2025
    “…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …”
  15. 35

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
  16. 36

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
  17. 37

    Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png by Minjin Guo (22751300)

    Published 2025
    “…Introduction<p>The increasing complexity of athlete cardiovascular risk profiles, coupled with evolving demands in pre-participation screening, necessitates robust, interpretable, and physiologically grounded assessment tools. …”