Search alternatives:
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
image design » images designed (Expand Search), simple design (Expand Search), space design (Expand Search)
binary space » banach space (Expand Search)
space based » surface based (Expand Search)
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
image design » images designed (Expand Search), simple design (Expand Search), space design (Expand Search)
binary space » banach space (Expand Search)
space based » surface based (Expand Search)
-
21
Backtracking strategy diagram.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
22
Comparison of differences in literature methods.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
23
Schematic of iteration process of IDE-IIGA.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
24
Schematic diagram of IGA chromosome coding.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
25
-
26
Sample image for illustration.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
27
-
28
-
29
Quadratic polynomial in 2D image plane.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
30
Comparison analysis of computation time.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
31
Process flow diagram of CBFD.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
32
Precision recall curve.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”