بدائل البحث:
designed optimization » design optimization (توسيع البحث), based optimization (توسيع البحث), guided optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
image designed » images designed (توسيع البحث), package designed (توسيع البحث), implant designed (توسيع البحث)
primary data » primary care (توسيع البحث)
designed optimization » design optimization (توسيع البحث), based optimization (توسيع البحث), guided optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
image designed » images designed (توسيع البحث), package designed (توسيع البحث), implant designed (توسيع البحث)
primary data » primary care (توسيع البحث)
-
1
S1 Data -
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
2
-
3
Parameter settings for algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
4
Parameter settings for algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
5
Average runtime of different algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
6
Average runtime of different algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
7
Flowchart of GJO-GWO algorithm.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
8
Detailed information of benchmark functions.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
9
Evaluation metrics of the models’ performance.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
10
Detailed information of datasets.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
11
Friedman test results.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
12
Average number of selected features.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
13
Wilcoxon rank sum test results.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
14
Wilcoxon rank sum test results.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
15
Average number of selected features.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
16
Sample image for illustration.
منشور في 2024"…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
-
17
Quadratic polynomial in 2D image plane.
منشور في 2024"…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
-
18
-
19
Comparison analysis of computation time.
منشور في 2024"…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
-
20
Process flow diagram of CBFD.
منشور في 2024"…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"