بدائل البحث:
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
image driven » climate driven (توسيع البحث), wave driven (توسيع البحث), mapk driven (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
image driven » climate driven (توسيع البحث), wave driven (توسيع البحث), mapk driven (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
41
-
42
-
43
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
44
-
45
-
46
-
47
-
48
-
49
-
50
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
51
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
52
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
53
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
54
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
55
S and V shaped transfer functions.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
56
S- and V-Type transfer function diagrams.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
57
Collaborative hunting behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
58
Friedman average rank sum test results.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
59
-
60
Generalized Tensor Decomposition With Features on Multiple Modes
منشور في 2021"…Our proposal handles a broad range of data types, including continuous, count, and binary observations. …"