Search alternatives:
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
image driven » climate driven (Expand Search), wave driven (Expand Search), mapk driven (Expand Search)
primary data » primary care (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
image driven » climate driven (Expand Search), wave driven (Expand Search), mapk driven (Expand Search)
primary data » primary care (Expand Search)
-
21
Flowchart of MSHHOTSA.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
22
Tension/compression spring design problem.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
23
Speed reducer design problem.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
24
Flowchart of TSA [43].
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
25
Pressure vessel design problem.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
26
Gear train design problem.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
27
The proportion integral derivative controller.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
28
Random parameter factor.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
29
Eight commonly used benchmark functions.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
30
Hyperbolic tangent row domain.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
31
Parameter settings.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
32
Nonlinear fast convergence factor.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
33
CEC2019 benchmark functions.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
34
Results of Comprehensive weighting.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
35
The prediction error of each model.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
36
VIF analysis results for hazard-causing factors.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
37
Benchmark function information.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
38
Geographical distribution of the study area.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
39
Results for model hyperparameter values.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
40
Flow chart of this study.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”