بدائل البحث:
features optimization » feature optimization (توسيع البحث), mixture optimization (توسيع البحث), resource optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary naive » binary pairs (توسيع البحث)
naive model » canine model (توسيع البحث)
features optimization » feature optimization (توسيع البحث), mixture optimization (توسيع البحث), resource optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary naive » binary pairs (توسيع البحث)
naive model » canine model (توسيع البحث)
-
21
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
منشور في 2020"…In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. …"
-
22
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
منشور في 2022"…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …"
-
23
DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx
منشور في 2024"…Logistic regression emerged as the optimal machine learning algorithm for both DLR models. …"
-
24
DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx
منشور في 2021"…A total of 4,198 radiomics features were extracted from the pre-biopsy multi-parametric MRI (including dynamic contrast-enhancement T1-weighted images, fat-suppressed T2-weighted images, and apparent diffusion coefficient map) of each patient. …"
-
25
Supplementary Material 8
منشور في 2025"…</p><p dir="ltr">When applied to AMR prediction, SMOTE enhances the ability of classification models to accurately identify resistant <i>Escherichia coli</i> strains by balancing the dataset, ensuring that machine learning algorithms do not overlook rare resistance patterns. …"