Search alternatives:
forest classification » text classification (Expand Search), risk classification (Expand Search), disease classification (Expand Search)
based optimization » whale optimization (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
forest classification » text classification (Expand Search), risk classification (Expand Search), disease classification (Expand Search)
based optimization » whale optimization (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
-
41
-
42
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
43
-
44
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
45
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
46
-
47
-
48
-
49
Data_Sheet_1_A Global Optimizer for Nanoclusters.PDF
Published 2019“…This method is implemented in PyAR (https://github.com/anooplab/pyar) program. The global optimization in PyAR involves two parts, generation of several trial geometries and gradient-based local optimization of the trial geometries. …”
-
50
Analysis of geo-spatiotemporal data using machine learning algorithms and reliability enhancement for urbanization decision support
Published 2020“…<p>We present systematic analyses of the temporal dynamics of the growth of Kumasi, the fastest growing city in Ghana using 20-year Landsat time-series data from 2000 to 2020 (with 1986 Landsat image as a baseline). Two classification algorithms – random forest (RF) and support vector machines (SVM) – were used to produce binary (built-up / non-built up) maps for all years within the temporal span. …”
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
Published 2021“…In this article, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. …”