Search alternatives:
learning optimization » learning motivation (Expand Search), lead optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
image learning » maze learning (Expand Search), face learning (Expand Search), aware learning (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a model » _ model (Expand Search)
learning optimization » learning motivation (Expand Search), lead optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
image learning » maze learning (Expand Search), face learning (Expand Search), aware learning (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a model » _ model (Expand Search)
-
61
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
62
-
63
-
64
-
65
-
66
-
67
Hierarchical clustering to infer a binary tree with <i>K</i> = 4 sampled populations.
Published 2023“…<p>(a) The starting tree corresponds to the independent-descent model, and has all populations directly connected to ancestral Population 0. …”
-
68
Classification performance after optimization.
Published 2025“…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
69
ANOVA test for optimization results.
Published 2025“…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
70
Wilcoxon test results for optimization.
Published 2025“…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
71
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
Published 2022“…In addition, hyperparameter tuning of the RF algorithm significantly improved F1 on CI assays. This study provided a basis for developing a toxicity classification model with improved performance by evaluating the effects of data set characteristics. …”
-
72
Plan frame of the house.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
73
Ablation test results.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
74
Hyperparameter selection test.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
75
Multiple index test results of different methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
76
Backtracking strategy diagram.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
77
Comparison of differences in literature methods.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
78
Schematic of iteration process of IDE-IIGA.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
79
Schematic diagram of IGA chromosome coding.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
80
Results of KNN.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”