Search alternatives:
design optimization » bayesian optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
design optimization » bayesian optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
-
41
Small-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
42
-
43
-
44
-
45
-
46
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
-
47
-
48
-
49
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
50
Summary of existing CNN models.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
51
-
52
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
Published 2024“…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
-
53
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
54
Thesis-RAMIS-Figs_Slides
Published 2024“…In this direction, the option of estimating the statistics of the model directly from the training image (performing a refined pattern search instead of simulating data) is a very promising.…”
-
55
IRBMO vs. variant comparison adaptation data.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
56
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
57
Testing results for classifying AD, MCI and NC.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
58
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
59
P-value on CEC-2017(Dim = 30).
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
60
Memory storage behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”