Showing 21 - 37 results of 37 for search '(( binary image model optimization algorithm ) OR ( binary risk model optimization algorithm ))', query time: 0.43s Refine Results
  1. 21
  2. 22

    Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf by Sai Sakunthala Guddanti (17739363)

    Published 2024
    “…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
  3. 23

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
  4. 24

    Testing results for classifying AD, MCI and NC. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
  5. 25

    Flowchart scheme of the ML-based model. by Noshaba Qasmi (20405009)

    Published 2024
    “…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
  6. 26
  7. 27

    Generalized Tensor Decomposition With Features on Multiple Modes by Jiaxin Hu (1327875)

    Published 2021
    “…An efficient alternating optimization algorithm with provable spectral initialization is further developed. …”
  8. 28

    Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png by Minjin Guo (22751300)

    Published 2025
    “…</p>Results and Discussion<p>Experimental evaluation across varied athlete cohorts demonstrates superior performance in risk stratification accuracy, diagnostic plausibility, and model transparency compared to traditional screening algorithms. …”
  9. 29

    Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX by Umesh C. Sharma (10785063)

    Published 2021
    “…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …”
  10. 30

    DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx by Yuhong Huang (115702)

    Published 2021
    “…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …”
  11. 31

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  12. 32

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…Importantly, this strategy locates samples adaptively on the transition between facies which improves the performance of conventional \emph{<i>MPS</i>} algorithms. In conclusion, this work shows that preferential sampling can contribute in \emph{<i>MPS</i>} even at very small sampling regimes and, as a corollary, demonstrates that prior models (obtained form a training image) can be used effectively not only to simulate non-sensed variables of the field, but to decide where to measure next.…”
  13. 33
  14. 34

    DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx by Jun Zhang (48506)

    Published 2024
    “…Logistic regression emerged as the optimal machine learning algorithm for both DLR models. …”
  15. 35

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…Optimization with GridSearchCV corroborated this stagnation, identifying a simple linear model (C=0.05, gamma='scale') as the optimal configuration, indicating that the additional complexity of nonlinear kernels did not confer predictive gains. …”
  16. 36

    Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx by Çaǧlar Çaǧlayan (12253934)

    Published 2022
    “…We performed threshold optimization for converting predicted probabilities into binary predictions and identified the cut-off maximizing the sum of sensitivity and specificity.…”
  17. 37

    Table 1_Creating an interactive database for nasopharyngeal carcinoma management: applying machine learning to evaluate metastasis and survival.docx by Yanbo Sun (2202439)

    Published 2024
    “…Five machine learning models were deployed for the binary classification task of DM, and their performance was evaluated using the area under the curve (AUC). …”