بدائل البحث:
models optimization » process optimization (توسيع البحث), codon optimization (توسيع البحث), wolf optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), wolf optimization (توسيع البحث)
image models » climate models (توسيع البحث), change models (توسيع البحث), damage model (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data model » data models (توسيع البحث), data modeling (توسيع البحث)
models optimization » process optimization (توسيع البحث), codon optimization (توسيع البحث), wolf optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), wolf optimization (توسيع البحث)
image models » climate models (توسيع البحث), change models (توسيع البحث), damage model (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data model » data models (توسيع البحث), data modeling (توسيع البحث)
-
21
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
منشور في 2025"…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …"
-
22
-
23
The statistical description of the original data set of the patients (<i>n</i> = 162).
منشور في 2025الموضوعات: -
24
The list of parameters of the modified data set for machine learning (<i>n</i> = 162).
منشور في 2025الموضوعات: -
25
Comparison of baseline and hybrid machine learning models in predicting IVF outcomes (%).
منشور في 2025الموضوعات: -
26
-
27
Calibration curve of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
28
ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
29
-
30
-
31
-
32
-
33
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
34
-
35
-
36
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
37
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
38
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
39
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
40
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"