Search alternatives:
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
image models » climate models (Expand Search), change models (Expand Search), scale models (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data swarm » data share (Expand Search)
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
image models » climate models (Expand Search), change models (Expand Search), scale models (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data swarm » data share (Expand Search)
-
1
-
2
-
3
-
4
-
5
ROC curve for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
6
Confusion matrix for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
7
-
8
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…Future work aims to generalize this algorithm for broader biological applications by training additional Cellpose models and adapting the A* framework.…”
-
9
-
10
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
-
11
-
12
Summary of existing CNN models.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
13
-
14
Thesis-RAMIS-Figs_Slides
Published 2024“…In this direction, the option of estimating the statistics of the model directly from the training image (performing a refined pattern search instead of simulating data) is a very promising.…”
-
15
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
Published 2024“…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
-
16
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
Published 2019“…Because of the semipredictive nature of the symmetric eNRTL-SAC model, the segment parameter regression is a critical step for solubility prediction accuracy. A particle swarm optimization algorithm is incorporated to preregress conceptual segment parameters of solutes. …”
-
17
Testing results for classifying AD, MCI and NC.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
18
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
19
-
20
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”