بدائل البحث:
process classification » protein classification (توسيع البحث), proposed classification (توسيع البحث), forest classification (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
image process » damage process (توسيع البحث), image processing (توسيع البحث), simple process (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 based » _ based (توسيع البحث), 1 based (توسيع البحث), ai based (توسيع البحث)
process classification » protein classification (توسيع البحث), proposed classification (توسيع البحث), forest classification (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
image process » damage process (توسيع البحث), image processing (توسيع البحث), simple process (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 based » _ based (توسيع البحث), 1 based (توسيع البحث), ai based (توسيع البحث)
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
Data_Sheet_1_A Global Optimizer for Nanoclusters.PDF
منشور في 2019"…This method is implemented in PyAR (https://github.com/anooplab/pyar) program. The global optimization in PyAR involves two parts, generation of several trial geometries and gradient-based local optimization of the trial geometries. …"
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
Result comparison with other existing models.
منشور في 2025"…The main objective of this research is to harness the noble strategies of artificial intelligence for identifying and classifying lung cancers more precisely from CT scan images at the early stage. This study introduces a novel lung cancer detection method, which was mainly focused on Convolutional Neural Networks (CNN) and was later customized for binary and multiclass classification utilizing a publicly available dataset of chest CT scan images of lung cancer. …"
-
80
Dataset distribution.
منشور في 2025"…The main objective of this research is to harness the noble strategies of artificial intelligence for identifying and classifying lung cancers more precisely from CT scan images at the early stage. This study introduces a novel lung cancer detection method, which was mainly focused on Convolutional Neural Networks (CNN) and was later customized for binary and multiclass classification utilizing a publicly available dataset of chest CT scan images of lung cancer. …"