Search alternatives:
process optimization » model optimization (Expand Search)
image process » damage process (Expand Search), image processing (Expand Search), simple process (Expand Search)
step » stem (Expand Search)
process optimization » model optimization (Expand Search)
image process » damage process (Expand Search), image processing (Expand Search), simple process (Expand Search)
step » stem (Expand Search)
-
41
-
42
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
Published 2019“…Because of the semipredictive nature of the symmetric eNRTL-SAC model, the segment parameter regression is a critical step for solubility prediction accuracy. A particle swarm optimization algorithm is incorporated to preregress conceptual segment parameters of solutes. …”
-
43
GSE96058 information.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
44
The performance of classifiers.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
45
-
46
Thesis-RAMIS-Figs_Slides
Published 2024“…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
-
47
DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf
Published 2021“…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …”
-
48
Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction
Published 2020“…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…”
-
49
Fortran & C++: design fractal-type optical diffractive element
Published 2022“…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …”