Showing 41 - 60 results of 99 for search '(( binary image process optimization algorithm ) OR ( primary data design optimization algorithm ))', query time: 0.40s Refine Results
  1. 41
  2. 42

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.…”
  3. 43

    Table_1_One-Time Optimization of Advanced T Cell Culture Media Using a Machine Learning Pipeline.DOCX by Paul Grzesik (11136582)

    Published 2021
    “…<p>The growing application of cell and gene therapies in humans leads to a need for cell type-optimized culture media. Design of Experiments (DoE) is a successful and well known tool for the development and optimization of cell culture media for bioprocessing. …”
  4. 44

    Wilcoxon’s rank sum test results. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  5. 45

    Flowchart of MSHHOTSA. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  6. 46

    Flowchart of TSA [43]. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  7. 47

    The proportion integral derivative controller. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  8. 48

    Random parameter factor. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  9. 49

    Eight commonly used benchmark functions. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  10. 50

    Hyperbolic tangent row domain. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  11. 51

    Parameter settings. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  12. 52

    Nonlinear fast convergence factor. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  13. 53

    CEC2019 benchmark functions. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  14. 54

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
  15. 55
  16. 56
  17. 57
  18. 58
  19. 59
  20. 60