يعرض 81 - 91 نتائج من 91 نتيجة بحث عن '(( binary image processing classification algorithm ) OR ( binary b based optimization algorithm ))', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 81
  2. 82
  3. 83

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. حسب Linus Woitke (22783534)

    منشور في 2025
    "…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …"
  4. 84
  5. 85

    Models and Dataset حسب M RN (9866504)

    منشور في 2025
    "…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …"
  6. 86

    Supplementary Material 8 حسب Nishitha R Kumar (19750617)

    منشور في 2025
    "…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
  7. 87

    Flow diagram of the automatic animal detection and background reconstruction. حسب David Tadres (9120564)

    منشور في 2020
    "…(E) The threshold value is calculated based on the histogram: it is the mean of the image subtracted by 4 (optimal value defined by trial and error). …"
  8. 88

    DataSheet_2_MRI-Based Radiomics to Differentiate between Benign and Malignant Parotid Tumors With External Validation.pdf حسب Francesca Piludu (10706391)

    منشور في 2021
    "…The model with the final feature set was achieved using the support vector machine binary classification algorithm.</p>Results<p>Models for discriminating between Warthin’s and malignant tumors, benign and Warthin’s tumors and benign and malignant tumors had an accuracy of 86.7%, 91.9% and 80.4%, respectively. …"
  9. 89

    DataSheet_1_MRI-Based Radiomics to Differentiate between Benign and Malignant Parotid Tumors With External Validation.xlsx حسب Francesca Piludu (10706391)

    منشور في 2021
    "…The model with the final feature set was achieved using the support vector machine binary classification algorithm.</p>Results<p>Models for discriminating between Warthin’s and malignant tumors, benign and Warthin’s tumors and benign and malignant tumors had an accuracy of 86.7%, 91.9% and 80.4%, respectively. …"
  10. 90

    DataSheet_1_Accurate Tumor Delineation vs. Rough Volume of Interest Analysis for 18F-FDG PET/CT Radiomics-Based Prognostic Modeling inNon-Small Cell Lung Cancer.docx حسب Shima Sepehri (11574997)

    منشور في 2021
    "…Logistic regression (LR), random forest (RF), and support vector machine (SVM), as well as their consensus through averaging the output probabilities, were considered for feature selection and modeling for overall survival (OS) prediction as a binary classification (either median OS or 6 months OS). …"
  11. 91

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles حسب Soham Savarkar (21811825)

    منشور في 2025
    "…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"