Showing 1 - 20 results of 23 for search '(( binary image robust optimization algorithm ) OR ( lines based wolf optimization algorithm ))', query time: 0.46s Refine Results
  1. 1
  2. 2

    Performance on GradEva. by Jamilu Yahaya (18563445)

    Published 2024
    “…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
  3. 3

    The considered test problems. by Jamilu Yahaya (18563445)

    Published 2024
    “…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
  4. 4

    Performance on FunEva. by Jamilu Yahaya (18563445)

    Published 2024
    “…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
  5. 5

    Performance on Iter. by Jamilu Yahaya (18563445)

    Published 2024
    “…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
  6. 6

    Continuation of Table 2. by Jamilu Yahaya (18563445)

    Published 2024
    “…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
  7. 7

    A new fast filtering algorithm for a 3D point cloud based on RGB-D information by Chaochuan Jia (7256237)

    Published 2019
    “…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
  8. 8
  9. 9
  10. 10

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  11. 11

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  12. 12

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  13. 13

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  14. 14

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20