Showing 1 - 20 results of 25 for search '(( binary image robust optimization algorithm ) OR ( primary data code optimization algorithm ))*', query time: 0.57s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    A new fast filtering algorithm for a 3D point cloud based on RGB-D information by Chaochuan Jia (7256237)

    Published 2019
    “…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
  7. 7

    Table_1_Screening of Long Non-coding RNAs Biomarkers for the Diagnosis of Tuberculosis and Preliminary Construction of a Clinical Diagnosis Model.docx by Juli Chen (12187358)

    Published 2022
    “…Background<p>Pathogenic testing for tuberculosis (TB) is not yet sufficient for early and differential clinical diagnosis; thus, we investigated the potential of screening long non-coding RNAs (lncRNAs) from human hosts and using machine learning (ML) algorithms combined with electronic health record (EHR) metrics to construct a diagnostic model.…”
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    ECE6379_PSOM.zip by Xingpeng Li (11825663)

    Published 2021
    “…Optimization algorithms that are commonly used to solve these problems will also be covered including linear programming, mixed-integer linear programming, Lagrange relaxation, dynamic programming, branch and bound, and duality theory.…”
  15. 15

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  16. 16

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  17. 17

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  18. 18

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  19. 19

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  20. 20