Search alternatives:
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
primary data » primary care (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
primary data » primary care (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
Published 2019“…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
-
10
-
11
-
12
-
13
-
14
Sample image for illustration.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
15
Data used to drive the Double Layer Carbon Model in the Qinling Mountains.
Published 2024“…The model divides the soil profile into topsoil (0-20 cm) and subsoil (20–100 cm) layers to match the SOC maps of the corresponding two layers generated by data-driven models. Each of these layers contains a young carbon pool (CY) with a higher decomposition rate and an old carbon pool (CO) with a lower decomposition rate. …”
-
16
Quadratic polynomial in 2D image plane.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
17
Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning
Published 2021“…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…”
-
18
Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning
Published 2021“…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…”
-
19
Comparison analysis of computation time.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
20
Process flow diagram of CBFD.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”