Search alternatives:
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
primary data » primary care (Expand Search)
data phase » late phase (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
primary data » primary care (Expand Search)
data phase » late phase (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
Iteration curve of the optimization process.
Published 2025“…The load-bearing mechanism of the proposed steel platform was analyzed theoretically, and finite element analysis (FEA) was employed to evaluate the stresses and deflections of key members. A particle swarm optimization (PSO) algorithm was integrated with the FEA model to optimize the cross-sectional dimensions of the primary beams, secondary beams, and foundation boxes, achieving a balance between load-bearing capacity and cost efficiency. …”
-
15
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
Published 2019“…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
-
16
Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning
Published 2021“…Several morphologic and texture features at a single-cell level have been extracted from the quantitative phase images. In addition, we compared four common machine learning algorithms, including naive Bayes, decision tree, K-nearest neighbors, support vector machine (SVM), and fully connected network. …”
-
17
Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning
Published 2021“…Several morphologic and texture features at a single-cell level have been extracted from the quantitative phase images. In addition, we compared four common machine learning algorithms, including naive Bayes, decision tree, K-nearest neighbors, support vector machine (SVM), and fully connected network. …”
-
18
-
19
Data Sheet 1_TBESO-BP: an improved regression model for predicting subclinical mastitis.pdf
Published 2025“…The model is based on TBESO (Multi-strategy Boosted Snake Optimizer) and utilizes monthly Dairy Herd Improvement (DHI) data to forecast the status of subclinical mastitis in cows.…”
-
20