يعرض 1 - 20 نتائج من 39 نتيجة بحث عن '(( binary image scale optimization algorithm ) OR ( binary 2 robust optimization algorithm ))', وقت الاستعلام: 0.59s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    The Pseudo-Code of the IRBMO Algorithm. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  6. 6

    IRBMO vs. meta-heuristic algorithms boxplot. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  7. 7

    IRBMO vs. feature selection algorithm boxplot. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  8. 8

    Quadratic polynomial in 2D image plane. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  9. 9
  10. 10
  11. 11
  12. 12

    Sample image for illustration. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  13. 13
  14. 14

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment حسب Jianfang Cao (1881379)

    منشور في 2019
    "…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …"
  15. 15
  16. 16

    Comparison analysis of computation time. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  17. 17

    Process flow diagram of CBFD. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  18. 18

    Precision recall curve. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  19. 19

    Pseudo Code of RBMO. حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
  20. 20

    P-value on CEC-2017(Dim = 30). حسب Chenyi Zhu (9383370)

    منشور في 2025
    "…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"