Showing 1 - 17 results of 17 for search '(( binary image scale optimization algorithm ) OR ( binary ai driven optimization algorithm ))*', query time: 0.47s Refine Results
  1. 1

    Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png by Minjin Guo (22751300)

    Published 2025
    “…</p>Methods<p>To address these challenges, we propose a novel AI-driven framework that incorporates two key methodological innovations: CardioSpectra, a structured sparse inference model, and Risk-Stratified Exertional Embedding (RSEE), a domain-specific representation learning strategy. …”
  2. 2
  3. 3
  4. 4
  5. 5

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
  6. 6
  7. 7
  8. 8

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  9. 9

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  10. 10

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. by Linus Woitke (22783534)

    Published 2025
    “…The image is then cleaned in c) using morphological filtering with an <i>opening</i> operation to remove small-scale noise. …”
  11. 11
  12. 12
  13. 13
  14. 14

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  15. 15

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  16. 16

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  17. 17

    Flow diagram of the automatic animal detection and background reconstruction. by David Tadres (9120564)

    Published 2020
    “…If the identical blob that was detected in panel J (bottom) is found in any of the new subtracted binary images (cyan arrow), the animal is considered as having left its original position, and the algorithm continues. …”