Showing 1 - 20 results of 22 for search '(( binary image scale optimization algorithm ) OR ( binary all proteins optimization algorithm ))', query time: 0.49s Refine Results
  1. 1
  2. 2

    Image1_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.JPEG by Wisnu Ananta Kusuma (9276182)

    Published 2022
    “…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
  3. 3

    Image2_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.JPEG by Wisnu Ananta Kusuma (9276182)

    Published 2022
    “…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
  4. 4

    Image4_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.jpg by Wisnu Ananta Kusuma (9276182)

    Published 2022
    “…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
  5. 5

    Image5_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.jpg by Wisnu Ananta Kusuma (9276182)

    Published 2022
    “…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
  6. 6

    Image3_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.JPEG by Wisnu Ananta Kusuma (9276182)

    Published 2022
    “…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
  7. 7

    DataSheet1_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.docx by Wisnu Ananta Kusuma (9276182)

    Published 2022
    “…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
  8. 8
  9. 9
  10. 10

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
  11. 11
  12. 12
  13. 13

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  14. 14

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  15. 15

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. by Linus Woitke (22783534)

    Published 2025
    “…The image is then cleaned in c) using morphological filtering with an <i>opening</i> operation to remove small-scale noise. …”
  16. 16
  17. 17
  18. 18
  19. 19

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
  20. 20

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”