بدائل البحث:
scale optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), phase optimization (توسيع البحث)
data optimization » path optimization (توسيع البحث), dose optimization (توسيع البحث), art optimization (توسيع البحث)
binary market » binary mask (توسيع البحث), bazar market (توسيع البحث)
scale optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), phase optimization (توسيع البحث)
data optimization » path optimization (توسيع البحث), dose optimization (توسيع البحث), art optimization (توسيع البحث)
binary market » binary mask (توسيع البحث), bazar market (توسيع البحث)
-
1
-
2
Event-driven data flow processing.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
3
-
4
-
5
Confusion matrix.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
6
Parameter settings.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
7
Dynamic resource allocation process.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
8
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
منشور في 2019"…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …"
-
9
-
10
-
11
Sample image for illustration.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
12
Quadratic polynomial in 2D image plane.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
13
Steps in the extraction of 14 coordinates from the CT slices for the curved MPR.
منشور في 2025"…The image is then cleaned in c) using morphological filtering with an <i>opening</i> operation to remove small-scale noise. …"
-
14
-
15
-
16
-
17
Comparison analysis of computation time.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
18
Process flow diagram of CBFD.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
19
Precision recall curve.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
20
Flow diagram of the automatic animal detection and background reconstruction.
منشور في 2020"…If the identical blob that was detected in panel J (bottom) is found in any of the new subtracted binary images (cyan arrow), the animal is considered as having left its original position, and the algorithm continues. …"