بدائل البحث:
small optimization » swarm optimization (توسيع البحث), whale optimization (توسيع البحث), spatial optimization (توسيع البحث)
image small » image 1_small (توسيع البحث), stage small (توسيع البحث), image scale (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data global » daily global (توسيع البحث)
small optimization » swarm optimization (توسيع البحث), whale optimization (توسيع البحث), spatial optimization (توسيع البحث)
image small » image 1_small (توسيع البحث), stage small (توسيع البحث), image scale (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data global » daily global (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
9
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
10
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
11
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
12
Thesis-RAMIS-Figs_Slides
منشور في 2024"…In addition, the practical benefits for \emph{<i>MPS</i>} in the context of simulating channelized facies models is demonstrated using synthetic data and real geological facies. Importantly, this strategy locates samples adaptively on the transition between facies which improves the performance of conventional \emph{<i>MPS</i>} algorithms. …"
-
13
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
14
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
15
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
16
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
17
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
18
S and V shaped transfer functions.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
19
S- and V-Type transfer function diagrams.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
20
Collaborative hunting behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"