يعرض 1 - 17 نتائج من 17 نتيجة بحث عن '(( binary image swarm optimization algorithm ) OR ( binary data process maximization algorithm ))', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
  2. 2
  3. 3

    Proposed Algorithm. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  4. 4
  5. 5

    Fig 3 - حسب Ali Ahmed (2567584)

    منشور في 2020
  6. 6

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  7. 7

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  8. 8

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  9. 9

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  10. 10

    Comparisons between ADAM and NADAM optimizers. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  11. 11

    Normalized computation rate for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  12. 12

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  13. 13
  14. 14

    Contextual Dynamic Pricing with Strategic Buyers حسب Pangpang Liu (18886419)

    منشور في 2024
    "…<p>Personalized pricing, which involves tailoring prices based on individual characteristics, is commonly used by firms to implement a consumer-specific pricing policy. In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. …"
  15. 15

    Thesis-RAMIS-Figs_Slides حسب Felipe Santibañez-Leal (10967991)

    منشور في 2024
    "…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…"
  16. 16

    Spectral estimation of large stochastic blockmodels with discrete nodal covariates حسب Angelo Mele (10809478)

    منشور في 2022
    "…We show that computing our estimator is much faster than standard variational expectation–maximization algorithms and scales well for large networks. …"
  17. 17

    Seed mix selection model حسب Bethanne Bruninga-Socolar (10923639)

    منشور في 2022
    "…The genetic algorithm then operated over 1000 iterations, applying crossover and mutation processes to optimize bee richness. …"