Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
task optimization » based optimization (Expand Search), phase optimization (Expand Search), path optimization (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
image task » imagery tasks (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
task optimization » based optimization (Expand Search), phase optimization (Expand Search), path optimization (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
image task » imagery tasks (Expand Search)
-
1
-
2
-
3
-
4
-
5
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
6
-
7
ROC curve for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
8
Confusion matrix for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
9
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…Future work aims to generalize this algorithm for broader biological applications by training additional Cellpose models and adapting the A* framework.…”
-
10
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
-
11
-
12
Summary of existing CNN models.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
13
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
Published 2024“…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
-
14
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
15
Testing results for classifying AD, MCI and NC.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
16
Sample image for illustration.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
17
Quadratic polynomial in 2D image plane.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
18
Thesis-RAMIS-Figs_Slides
Published 2024“…<pre>Figures at Thesis_RAMIS/Figs_PI related with PhD Thesis:<br><br>AN INFORMATION-THEORETIC SAMPLING STRATEGY FOR THE RECOVERY OF GEOLOGICAL IMAGES: MODELING, ANALYSIS, AND IMPLEMENTATION<br><br>Data for the <a href="https://github.com/fsantibanezleal/FASL_Thesis_RAMIS" rel="noreferrer" target="_blank">LaTeX </a>version of the document<br><br>In this thesis the role of preferential sampling has been systematically addressed for the task of geological facies recovery using multiple-point simulation (\emph{<i>MPS</i>}) and for the problem of short-term planning in mining. …”
-
19
Comparison analysis of computation time.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
20
Process flow diagram of CBFD.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”