يعرض 1 - 13 نتائج من 13 نتيجة بحث عن '(( binary image wolf optimization algorithm ) OR ( binary based yet optimization algorithm ))', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1

    Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm حسب Hussein Ali Bardan (21976208)

    منشور في 2025
    "…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …"
  2. 2
  3. 3

    <i>hi</i>PRS algorithm process flow. حسب Michela C. Massi (14599915)

    منشور في 2023
    "…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. <b>(E)</b> Starting from the interaction at the top of <i>I</i><sub><i>δ</i></sub>, <i>hi</i>PRS constructs <i>I</i><sub><i>K</i></sub>, selecting <i>K</i> (where <i>K</i> is user-specified) terms through the greedy optimization of the ratio between MI (<i>relevance</i>) and a suitable measure of similarity for interactions (<i>redundancy)</i> (cf. …"
  4. 4

    SHAP bar plot. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  5. 5

    Sample screening flowchart. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  6. 6

    Descriptive statistics for variables. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  7. 7

    SHAP summary plot. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  8. 8

    ROC curves for the test set of four models. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  9. 9

    Display of the web prediction interface. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  10. 10
  11. 11
  12. 12

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf حسب Muhammad Awais (263096)

    منشور في 2024
    "…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
  13. 13

    Supplementary Material 8 حسب Nishitha R Kumar (19750617)

    منشور في 2025
    "…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"