Showing 1 - 20 results of 21 for search '(( binary image wolf optimization algorithm ) OR ( lens based complex optimization algorithm ))', query time: 0.62s Refine Results
  1. 1

    Lens imaging opposition-based learning. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  2. 2
  3. 3

    Compare algorithm parameter settings. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  4. 4
  5. 5
  6. 6

    -value on CEC2022 (dim = 20). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  7. 7

    Precision elimination strategy. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  8. 8

    Results of low-light image enhancement test. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  9. 9

    -value on 23 benchmark functions (dim = 30). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  10. 10

    Evaluation metrics obtained by SBOA and MESBOA. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  11. 11

    Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm by Hussein Ali Bardan (21976208)

    Published 2025
    “…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
  12. 12
  13. 13
  14. 14

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  15. 15

    Minisymposterium: Muq-Hippylib: A Bayesian Inference Software Framework Integrating Data with Complex Predictive Models under Uncertainty by Ki-Tae Kim (10184066)

    Published 2021
    “…The central questions are: How do we optimally learn from data through the lens of models? …”
  16. 16

    SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion by Omar Ghattas (4387300)

    Published 2020
    “…The central questions are: How do we optimally learn from data through the lens of models? …”
  17. 17

    SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion by Umberto Villa (8400192)

    Published 2020
    “…The central questions are: How do we optimally learn from data through the lens of models? …”
  18. 18

    Parameter settings. by Yang Gao (18005)

    Published 2025
    “…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
  19. 19

    Fusion framework. by Yang Gao (18005)

    Published 2025
    “…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
  20. 20

    Generation steps of user profiles. by Yang Gao (18005)

    Published 2025
    “…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”