Showing 61 - 77 results of 77 for search '(( binary its feature optimization algorithm ) OR ( binary simple model optimization algorithm ))', query time: 1.13s Refine Results
  1. 61

    Memory storage behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  2. 62

    Elite search behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  3. 63

    Description of the datasets. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  4. 64

    S and V shaped transfer functions. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  5. 65

    S- and V-Type transfer function diagrams. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  6. 66

    Collaborative hunting behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  7. 67

    Friedman average rank sum test results. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  8. 68

    IRBMO vs. variant comparison adaptation data. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  9. 69

    QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm by Z.Y. Algamal (5547620)

    Published 2020
    “…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
  10. 70

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  11. 71

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
  12. 72

    Models and Dataset by M RN (9866504)

    Published 2025
    “…<p dir="ltr"><b>P3DE (Parameter-less Population Pyramid with Deep Ensemble):</b><br>P3DE is a hybrid feature selection framework that combines the Parameter-less Population Pyramid (P3) metaheuristic optimization algorithm with a deep ensemble of autoencoders. …”
  13. 73

    Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield... by Uttam Khatri (12689072)

    Published 2022
    “…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
  14. 74

    Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx by Yuan Liu (88411)

    Published 2020
    “…In this predictor, we introduced a sequence-based feature algorithm consisting of two feature representations, (1) k-mer spectrum and (2) positional nucleotide binary vector, to capture the sequential characteristics of 5hmC sites. …”
  15. 75

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</p><h4><b>10 Supervised machine learning classifiers for </b><b><i>E.coli</i></b><b> genome analysis:</b></h4><ol><li><b>Logistic regression (LR): </b> A simple yet effective statistical model for binary classification, such as predicting antibiotic resistance or susceptibility in <i>E. coli</i>.…”
  16. 76

    Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat. by Enrico Bertozzi (22461709)

    Published 2025
    “…Optimization with GridSearchCV corroborated this stagnation, identifying a simple linear model (C=0.05, gamma='scale') as the optimal configuration, indicating that the additional complexity of nonlinear kernels did not confer predictive gains. …”
  17. 77

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”