Search alternatives:
design optimization » bayesian optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data codon » data code (Expand Search), data codes (Expand Search), data codings (Expand Search)
design optimization » bayesian optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data codon » data code (Expand Search), data codes (Expand Search), data codings (Expand Search)
-
21
S and V shaped transfer functions.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
22
S- and V-Type transfer function diagrams.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
23
Collaborative hunting behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
24
Friedman average rank sum test results.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
25
IRBMO vs. variant comparison adaptation data.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
26
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
Published 2019“…The methodology incorporates key features of the symmetric eNRTL-SAC model structure to reduce the number of parameters and uses a hybrid of global search algorithms for parameter estimation. …”
-
27
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
Published 2025“…., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”