Showing 1 - 20 results of 44 for search '(( binary labels policy optimization algorithm ) OR ( binary b model optimization algorithm ))', query time: 0.48s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  6. 6

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  7. 7

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Classification baseline performance. by Doaa Sami Khafaga (21463870)

    Published 2025
    “…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
  15. 15

    Feature selection results. by Doaa Sami Khafaga (21463870)

    Published 2025
    “…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
  16. 16

    ANOVA test result. by Doaa Sami Khafaga (21463870)

    Published 2025
    “…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
  17. 17

    Summary of literature review. by Doaa Sami Khafaga (21463870)

    Published 2025
    “…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
  18. 18

    Hierarchical clustering to infer a binary tree with <i>K</i> = 4 sampled populations. by Tristan Mary-Huard (3864)

    Published 2023
    “…After <i>K</i> − 2 = 2 steps, the resulting tree is binary and the algorithm stops.</p>…”
  19. 19
  20. 20