بدائل البحث:
using optimization » joint optimization (توسيع البحث), design optimization (توسيع البحث), step optimization (توسيع البحث)
binary labels » trinary labels (توسيع البحث)
labels using » levels using (توسيع البحث), labeling using (توسيع البحث), models using (توسيع البحث)
binary wave » binary image (توسيع البحث)
wave global » yale global (توسيع البحث), waqi global (توسيع البحث), based global (توسيع البحث)
using optimization » joint optimization (توسيع البحث), design optimization (توسيع البحث), step optimization (توسيع البحث)
binary labels » trinary labels (توسيع البحث)
labels using » levels using (توسيع البحث), labeling using (توسيع البحث), models using (توسيع البحث)
binary wave » binary image (توسيع البحث)
wave global » yale global (توسيع البحث), waqi global (توسيع البحث), based global (توسيع البحث)
-
1
-
2
-
3
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
4
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
5
Summary of Notations Used in this paper.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
6
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. …"
-
7
An Example of a WPT-MEC Network.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
8
Related Work Summary.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
9
Simulation parameters.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
10
Training losses for N = 10.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
11
Normalized computation rate for N = 10.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
12
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…P <0.05 was considered statistically significant. (B). The MCDM algorithm-Stage 2. Feature Ranking, this stage is the process of using the TOPSIS method to rank features. …"
-
13
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
-
14
-
15
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>E)</b> Conversion of species labels into numerical values using a label encoder. …"
-
16
Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports
منشور في 2020"…</p> <p> Bone scintigraphy reports of patients undergoing surgery for bone metastases were labeled each by three independent reviewers using a binary classification (single metastasis versus two or more metastases) to establish a ground truth. …"
-
17
Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
منشور في 2021"…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …"
-
18
Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
منشور في 2021"…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …"
-
19
Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
منشور في 2021"…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …"
-
20
DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf
منشور في 2021"…<p>Quantum annealing is a global optimization algorithm that uses the quantum tunneling effect to speed-up the search for an optimal solution. …"