Search alternatives:
dose optimization » based optimization (Expand Search), model optimization (Expand Search), wolf optimization (Expand Search)
binary large » binary image (Expand Search), binary edge (Expand Search)
binary using » injury using (Expand Search)
using dose » using drone (Expand Search), using base (Expand Search), using drones (Expand Search)
dose optimization » based optimization (Expand Search), model optimization (Expand Search), wolf optimization (Expand Search)
binary large » binary image (Expand Search), binary edge (Expand Search)
binary using » injury using (Expand Search)
using dose » using drone (Expand Search), using base (Expand Search), using drones (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
DataSheet1_Improving the convergence of an iterative algorithm for solving arbitrary linear equation systems using classical or quantum binary optimization.pdf
Published 2024“…<p>Recent advancements in quantum computing and quantum-inspired algorithms have sparked renewed interest in binary optimization. …”
-
13
-
14
-
15
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
16
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
17
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
18
Datasets and their properties.
Published 2023“…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
-
19
Parameter settings.
Published 2023“…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
-
20