Search alternatives:
features optimization » feature optimization (Expand Search), mixture optimization (Expand Search), resource optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
like features » level features (Expand Search), key features (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
features optimization » feature optimization (Expand Search), mixture optimization (Expand Search), resource optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
like features » level features (Expand Search), key features (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
Feature selection results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
7
Feature selection metrics and their definitions.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
8
ANOVA test for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
9
Wilcoxon test results for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
10
Feature selection results.
Published 2025“…Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …”
-
11
-
12
ROC curve for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
13
Confusion matrix for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
14
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…Future work aims to generalize this algorithm for broader biological applications by training additional Cellpose models and adapting the A* framework.…”
-
15
Classification performance after optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
16
ANOVA test for optimization results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
17
Wilcoxon test results for optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
18
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
19
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
-
20