بدائل البحث:
features optimization » feature optimization (توسيع البحث), mixture optimization (توسيع البحث), resource optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
like features » level features (توسيع البحث), key features (توسيع البحث)
tasks based » task based (توسيع البحث), cases based (توسيع البحث)
features optimization » feature optimization (توسيع البحث), mixture optimization (توسيع البحث), resource optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
like features » level features (توسيع البحث), key features (توسيع البحث)
tasks based » task based (توسيع البحث), cases based (توسيع البحث)
-
21
The AD-PSO-Guided WOA LSTM framework.
منشور في 2025"…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
-
22
Prediction results of individual models.
منشور في 2025"…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
-
23
Classification baseline performance.
منشور في 2025"…Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
24
ANOVA test result.
منشور في 2025"…Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
25
Summary of literature review.
منشور في 2025"…Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
26
An Example of a WPT-MEC Network.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
27
Related Work Summary.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
28
Simulation parameters.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
29
Training losses for N = 10.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
30
Normalized computation rate for N = 10.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
31
Summary of Notations Used in this paper.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
32
-
33
-
34
Pseudo Code of RBMO.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
35
P-value on CEC-2017(Dim = 30).
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
36
Memory storage behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
37
Elite search behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
38
Description of the datasets.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
39
S and V shaped transfer functions.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
40
S- and V-Type transfer function diagrams.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"