Search alternatives:
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
like process » like proteins (Expand Search), like protease (Expand Search), like protein (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
lens » less (Expand Search)
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
like process » like proteins (Expand Search), like protease (Expand Search), like protein (Expand Search)
based based » based case (Expand Search), based basis (Expand Search), ranked based (Expand Search)
lens » less (Expand Search)
-
1
Lens imaging opposition-based learning.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
2
-
3
-
4
Optical Assessment of Tear Glucose by Smart Biosensor Based on Nanoparticle Embedded Contact Lens
Published 2021“…Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. …”
-
5
Optical Assessment of Tear Glucose by Smart Biosensor Based on Nanoparticle Embedded Contact Lens
Published 2021“…Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. …”
-
6
-
7
-
8
-
9
-
10
Compare algorithm parameter settings.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
11
Classification performance after optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
12
ANOVA test for optimization results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
13
Wilcoxon test results for optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
14
-
15
-
16
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
17
Wilcoxon test results for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
18
Feature selection metrics and their definitions.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
19
Statistical summary of all models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
20
Feature selection results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”