بدائل البحث:
proteins classification » protein classification (توسيع البحث), pattern classification (توسيع البحث), crowding classification (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
m proteins » _ proteins (توسيع البحث), 2 proteins (توسيع البحث), i proteins (توسيع البحث)
binary m » binary _ (توسيع البحث), binary b (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a codon » _ codon (توسيع البحث), a common (توسيع البحث)
proteins classification » protein classification (توسيع البحث), pattern classification (توسيع البحث), crowding classification (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
m proteins » _ proteins (توسيع البحث), 2 proteins (توسيع البحث), i proteins (توسيع البحث)
binary m » binary _ (توسيع البحث), binary b (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a codon » _ codon (توسيع البحث), a common (توسيع البحث)
-
1
-
2
-
3
Data_Sheet_1_Deep Learning-Based Classification of GAD67-Positive Neurons Without the Immunosignal.pdf
منشور في 2021"…Furthermore, we confirmed that our deep learning-based method surpassed classic machine-learning methods in terms of binary classification performance. Combined with the visualization of the hidden layer of our deep learning algorithm, our model provides a new platform for identifying unbiased criteria for cell-type classification.…"
-
4
Schematic overview of SINATRA Pro: A novel framework for discovering biophysical signatures that differentiate classes of proteins.
منشور في 2022"…<p><b>(A)</b> The SINATRA Pro algorithm requires the following inputs: <i>(i)</i> (<i>x</i>, <i>y</i>, <i>z</i>)-coordinates corresponding to the structural position of each atom in every protein; <i>(ii)</i> <b>y</b>, a binary vector denoting protein class or phenotype (e.g., mutant versus wild-type); <i>(iii)</i> <i>r</i>, the cutoff distance for simplicial construction (i.e., constructing the mesh representation for every protein); <i>(iv)</i> <i>c</i>, the number of cones of directions; <i>(v)</i> <i>d</i>, the number of directions within each cone; <i>(vi)</i> <i>θ</i>, the cap radius used to generate directions in a cone; and <i>(vii)</i> <i>l</i>, the number of sublevel sets (i.e., filtration steps) used to compute the differential Euler characteristic (DEC) curve along a given direction. …"
-
5
-
6