بدائل البحث:
elimination algorithm » maximization algorithm (توسيع البحث), optimization algorithms (توسيع البحث), segmentation algorithm (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
main feature » main features (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary main » binary mask (توسيع البحث), binary image (توسيع البحث), binary pairs (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data based » data used (توسيع البحث)
elimination algorithm » maximization algorithm (توسيع البحث), optimization algorithms (توسيع البحث), segmentation algorithm (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
main feature » main features (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary main » binary mask (توسيع البحث), binary image (توسيع البحث), binary pairs (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data based » data used (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
6
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
منشور في 2022"…However, ToxCast assays differ in the amount of data and degree of class imbalance (CI). Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …"
-
7
Proposed Algorithm.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
8
Variable Selection and Estimation for Misclassified Binary Responses and Multivariate Error-Prone Predictors
منشور في 2023"…<p>In statistical analysis or supervised learning, classification has been an attractive topic. Typically, a main goal is to adopt predictors to characterize the primarily interested binary random variables. …"
-
9
Parameter settings of the comparison algorithms.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
10
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
11
-
12
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
13
-
14
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
15
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
16
-
17
-
18
-
19
-
20