بدائل البحث:
learning optimization » learning motivation (توسيع البحث), lead optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
map learning » maze learning (توسيع البحث), mean learning (توسيع البحث), a learning (توسيع البحث)
binary map » binary mask (توسيع البحث), binary image (توسيع البحث)
binary b » binary _ (توسيع البحث)
b model » _ model (توسيع البحث), a model (توسيع البحث), 2 model (توسيع البحث)
learning optimization » learning motivation (توسيع البحث), lead optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
map learning » maze learning (توسيع البحث), mean learning (توسيع البحث), a learning (توسيع البحث)
binary map » binary mask (توسيع البحث), binary image (توسيع البحث)
binary b » binary _ (توسيع البحث)
b model » _ model (توسيع البحث), a model (توسيع البحث), 2 model (توسيع البحث)
-
21
-
22
Classification baseline performance.
منشور في 2025"…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
23
Feature selection results.
منشور في 2025"…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
24
ANOVA test result.
منشور في 2025"…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
25
Summary of literature review.
منشور في 2025"…The contributions include developing a baseline Convolutional Neural Network (CNN) that achieves an initial accuracy of 86.29%, surpassing existing state-of-the-art deep learning models. Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
26
-
27
Hierarchical clustering to infer a binary tree with <i>K</i> = 4 sampled populations.
منشور في 2023"…After <i>K</i> − 2 = 2 steps, the resulting tree is binary and the algorithm stops.</p>…"
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx
منشور في 2023"…</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …"
-
37
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
منشور في 2025"…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …"
-
38
-
39
-
40
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>K)</b> Algorithm selection from all models. <b>L)</b> Random forest selection. …"