Search alternatives:
simulation algorithm » segmentation algorithm (Expand Search), maximization algorithm (Expand Search), selection algorithm (Expand Search)
based optimization » whale optimization (Expand Search)
process simulation » process optimization (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary mask » binary image (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
mask based » task based (Expand Search), tasks based (Expand Search), risk based (Expand Search)
simulation algorithm » segmentation algorithm (Expand Search), maximization algorithm (Expand Search), selection algorithm (Expand Search)
based optimization » whale optimization (Expand Search)
process simulation » process optimization (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary mask » binary image (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
mask based » task based (Expand Search), tasks based (Expand Search), risk based (Expand Search)
-
61
-
62
-
63
-
64
-
65
Small-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
66
-
67
-
68
-
69
-
70
-
71
-
72
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
73
-
74
-
75
A Scalable Partitioned Approach to Model Massive Nonstationary Non-Gaussian Spatial Datasets
Published 2022“…Examples include count data on disease incidence and binary satellite data on cloud mask (cloud/no-cloud). …”
-
76
Thesis-RAMIS-Figs_Slides
Published 2024“…In this direction, the option of estimating the statistics of the model directly from the training image (performing a refined pattern search instead of simulating data) is a very promising.<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
-
77
-
78
-
79
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
-
80
Table_1_Identification of sources of DIF using covariates in patient-reported outcome measures: a simulation study comparing two approaches based on Rasch family models.DOCX
Published 2023“…Our aim was to obtain an iterative item-by-item DIF detection method based on Rasch family models that enable to adjust group comparisons for DIF in presence of two binary covariates. Both algorithms were evaluated through a simulation study under various conditions aiming to be representative of health research contexts. …”