Showing 1 - 20 results of 23 for search '(( binary mask based optimization algorithm ) OR ( single layer wolf optimization algorithm ))', query time: 0.46s Refine Results
  1. 1

    Comparison of optimization algorithms. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  2. 2

    Algorithm comparison. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  3. 3

    Process of GWO optimization. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  4. 4

    A* Path-Finding Algorithm to Determine Cell Connections by Max Weng (22327159)

    Published 2025
    “…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…”
  5. 5

    . Fitness curve. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  6. 6

    Partial faults features. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  7. 7

    Diagram of faults identification. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  8. 8

    Confusion matrix. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  9. 9

    Sample group. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  10. 10

    Data in the experiment. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  11. 11

    Diagram of attention mechanism. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  12. 12

    Accuracy curve. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  13. 13

    Structure of MLP. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  14. 14

    Fault recording signal. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  15. 15

    Ablation study. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  16. 16

    Dual-channel MLP-Attention model. by Ning Ji (325849)

    Published 2024
    “…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
  17. 17

    Flowchart scheme of the ML-based model. by Noshaba Qasmi (20405009)

    Published 2024
    “…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
  18. 18
  19. 19
  20. 20

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”