بدائل البحث:
compared optimization » competing optimization (توسيع البحث), based optimization (توسيع البحث), convex optimization (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
based compared » cases compared (توسيع البحث), care compared (توسيع البحث), ad compared (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث)
binary mask » binary image (توسيع البحث)
compared optimization » competing optimization (توسيع البحث), based optimization (توسيع البحث), convex optimization (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
based compared » cases compared (توسيع البحث), care compared (توسيع البحث), ad compared (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث)
binary mask » binary image (توسيع البحث)
-
41
Data_Sheet_1_A Global Optimizer for Nanoclusters.PDF
منشور في 2019"…This method is implemented in PyAR (https://github.com/anooplab/pyar) program. The global optimization in PyAR involves two parts, generation of several trial geometries and gradient-based local optimization of the trial geometries. …"
-
42
An Example of a WPT-MEC Network.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
43
Related Work Summary.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
44
Simulation parameters.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
45
Training losses for N = 10.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
46
Normalized computation rate for N = 10.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
47
Summary of Notations Used in this paper.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
48
the functioning of BRPSO.
منشور في 2025"…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
49
Characteristic of 6- and 10-story SMRF [99,98].
منشور في 2025"…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
50
The RFD’s behavior mechanism (2002).
منشور في 2025"…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
51
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
منشور في 2019"…This method aligns the color image to the depth image, and the color mapping image is converted to an HSV image. Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …"
-
52
Testing results for classifying AD, MCI and NC.
منشور في 2024"…The model further showed superior results on binary classification compared with existing methods. …"
-
53
Summary of existing CNN models.
منشور في 2024"…The model further showed superior results on binary classification compared with existing methods. …"
-
54
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
منشور في 2025"…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …"
-
55
-
56
-
57
Comparison in terms of the sensitivity.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
58
Parameter sensitivity of BIMGO.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
59
Details of the medical datasets.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
60
The flowchart of IMGO.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"