Search alternatives:
codon optimization » wolf optimization (Expand Search)
pso optimization » phase optimization (Expand Search), path optimization (Expand Search), dose optimization (Expand Search)
binary mask » binary image (Expand Search)
genes based » gene based (Expand Search), lens based (Expand Search)
based pso » based pa (Expand Search), based pet (Expand Search), based ph (Expand Search)
codon optimization » wolf optimization (Expand Search)
pso optimization » phase optimization (Expand Search), path optimization (Expand Search), dose optimization (Expand Search)
binary mask » binary image (Expand Search)
genes based » gene based (Expand Search), lens based (Expand Search)
based pso » based pa (Expand Search), based pet (Expand Search), based ph (Expand Search)
-
1
-
2
-
3
-
4
Image_2_A two-stage hybrid gene selection algorithm combined with machine learning models to predict the rupture status in intracranial aneurysms.TIF
Published 2022“…First, we used the Fast Correlation-Based Filter (FCBF) algorithm to filter a large number of irrelevant and redundant genes in the raw dataset, and then used the wrapper feature selection method based on the he Multi-layer Perceptron (MLP) neural network and the Particle Swarm Optimization (PSO), accuracy (ACC) and mean square error (MSE) were then used as the evaluation criteria. …”
-
5
Image_1_A two-stage hybrid gene selection algorithm combined with machine learning models to predict the rupture status in intracranial aneurysms.TIF
Published 2022“…First, we used the Fast Correlation-Based Filter (FCBF) algorithm to filter a large number of irrelevant and redundant genes in the raw dataset, and then used the wrapper feature selection method based on the he Multi-layer Perceptron (MLP) neural network and the Particle Swarm Optimization (PSO), accuracy (ACC) and mean square error (MSE) were then used as the evaluation criteria. …”
-
6
Image_3_A two-stage hybrid gene selection algorithm combined with machine learning models to predict the rupture status in intracranial aneurysms.TIF
Published 2022“…First, we used the Fast Correlation-Based Filter (FCBF) algorithm to filter a large number of irrelevant and redundant genes in the raw dataset, and then used the wrapper feature selection method based on the he Multi-layer Perceptron (MLP) neural network and the Particle Swarm Optimization (PSO), accuracy (ACC) and mean square error (MSE) were then used as the evaluation criteria. …”
-
7
-
8
GSE96058 information.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
9
The performance of classifiers.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
10
<i>FS</i> index of KNN on the selected feature subset.
Published 2024“…</p><p>Methods</p><p>Based on this, this paper proposes a hybrid feature selection algorithm combining information gain and grouping particle swarm optimization (IG-GPSO). …”
-
11
<i>ACC</i> index of KNN on the selected feature subset.
Published 2024“…</p><p>Methods</p><p>Based on this, this paper proposes a hybrid feature selection algorithm combining information gain and grouping particle swarm optimization (IG-GPSO). …”
-
12
<i>FS</i> index of SVM on the selected feature subset.
Published 2024“…</p><p>Methods</p><p>Based on this, this paper proposes a hybrid feature selection algorithm combining information gain and grouping particle swarm optimization (IG-GPSO). …”
-
13
The flowchart of the IG-GPSO.
Published 2024“…</p><p>Methods</p><p>Based on this, this paper proposes a hybrid feature selection algorithm combining information gain and grouping particle swarm optimization (IG-GPSO). …”
-
14
<i>ACC</i> index of SVM on the selected feature subset.
Published 2024“…</p><p>Methods</p><p>Based on this, this paper proposes a hybrid feature selection algorithm combining information gain and grouping particle swarm optimization (IG-GPSO). …”