بدائل البحث:
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
d optimization » _ optimization (توسيع البحث), b optimization (توسيع البحث), led optimization (توسيع البحث)
binary mask » binary image (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data model » data models (توسيع البحث)
mask d » mask _ (توسيع البحث), mask a (توسيع البحث), task d (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
d optimization » _ optimization (توسيع البحث), b optimization (توسيع البحث), led optimization (توسيع البحث)
binary mask » binary image (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data model » data models (توسيع البحث)
mask d » mask _ (توسيع البحث), mask a (توسيع البحث), task d (توسيع البحث)
-
141
-
142
Image processing workflow.
منشور في 2020"…All image segments of cell clusters were standardized to the same size with either (b) Null Bumper, (b) Blended or (d) Masked methods. These annotated training images were passed to the cCNN to determine optimal network weights (e). …"
-
143
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
-
144
-
145
-
146
-
147
Bayesian sequential design for sensitivity experiments with hybrid responses
منشور في 2023"…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …"
-
148
Steps in the extraction of 14 coordinates from the CT slices for the curved MPR.
منشور في 2025"…<p>It shows the step-by-step transformation for two examples on the left and right sides: a) a binary mask of the lower dental arch is shown, which is compared with the binarized CT images to obtain the best slice containing the lower jaw, as shown in b). …"
-
149
Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx
منشور في 2022"…</p>Materials and Methods<p>Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. …"
-
150
Supplementary Material 8
منشور في 2025"…</p><p dir="ltr">When applied to AMR prediction, SMOTE enhances the ability of classification models to accurately identify resistant <i>Escherichia coli</i> strains by balancing the dataset, ensuring that machine learning algorithms do not overlook rare resistance patterns. …"
-
151
-
152
-
153
-
154
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
-
155
Flowchart of the entire pipeline.
منشور في 2024"…Then, the protein feature generation algorithms described in our previous study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0315330#pone.0315330.ref022" target="_blank">22</a>] are applied to the data, and pairwise ML models are trained and evaluated (see Section Evaluation of pairwise machine learning models). …"
-
156
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …"
-
157
Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX
منشور في 2022"…</p>Methods<p>This diagnostic accuracy study used retrospective data from MIMIC-III and eICU databases. Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …"
-
158
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
منشور في 2022"…We extracted three-dimensional (3D) patterns to calculate regional coherence and then implement a univariate statistical t-test to access a 3D mask that preserves voxels showing significant changes. …"
-
159
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
منشور في 2025"…RSEE projects heterogeneous input data into an exertion-conditioned latent space, aligning model predictions with observed physiological variance and mitigating false positives by explicitly modeling the overlap between athletic remodeling and subclinical pathology.…"
-
160
An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach
منشور في 2025"…The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews. …"