Search alternatives:
loop optimization » codon optimization (Expand Search), wolf optimization (Expand Search), lead optimization (Expand Search)
from optimization » fox optimization (Expand Search), swarm optimization (Expand Search), codon optimization (Expand Search)
binary mask » binary image (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
loop optimization » codon optimization (Expand Search), wolf optimization (Expand Search), lead optimization (Expand Search)
from optimization » fox optimization (Expand Search), swarm optimization (Expand Search), codon optimization (Expand Search)
binary mask » binary image (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
-
1
-
2
-
3
SHAP bar plot.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
4
Sample screening flowchart.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
5
Descriptive statistics for variables.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
6
SHAP summary plot.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
7
ROC curves for the test set of four models.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
8
Display of the web prediction interface.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
9
-
10
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
Published 2025“…Current approaches to cardiovascular screening, typically reliant on binary ECG interpretations or risk scores, often fall short in accurately differentiating benign athletic heart adaptations from early-stage pathological conditions, particularly across diverse athletic populations. …”
-
11
-
12
-
13
Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods
Published 2022“…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
-
14
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
Published 2025“…For scientific advancement in this area, it is recommended to incorporate additional morphological features from the original dataset to build a robust multivariate model and to use metrics such as Recall and F1-Score for a more accurate risk assessment. …”
-
15
Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx
Published 2022“…We performed threshold optimization for converting predicted probabilities into binary predictions and identified the cut-off maximizing the sum of sensitivity and specificity.…”
-
16
Table 1_Creating an interactive database for nasopharyngeal carcinoma management: applying machine learning to evaluate metastasis and survival.docx
Published 2024“…Patients were stratified into two risk groups for survival analysis, and the survival curves were presented.…”